

ALIST Status

Nov 17-20, 2003

M. Ulrickson
Presented at the ALPS/PFC Meeting

Outline

- Liquid Pumping Considerations
- Nozzle design
- Available equipment

Liquid Pumping Considerations

- Poloidal Length: 0.8 m (floor of NSTX)
- Toroidal Length: 0.9 m (1/6 circumference)
- Area of Liquid: 0.7 m² (close to notion of 1 m²)
- Minimum thickness: 2 mm (thermally thick for NSTX exposure time)
- Velocity: 10 m/s
- Flow rate: 17.8 l/s (282 gal/min)
- For supply pipe flow ~ 1 m/s need 2 pipes 4 in dia.

Liquid Pumping Considerations

- Liquid sodium has been used to cool nuclear reactors extensively
- Information from FFTF has shown that considerable vertical head (~30 ft) is needed to provide sufficient suction side pressure for high capacity (100-200 gpm) EM pumps used for sodium.
- Lithium has ½ the density of sodium implying more head is needed.
- Conclusion: the lithium pump cannot be close to NSTX.

Nozzle design

- Application of free surface liquids to the NSTX divertor will require closely packed nozzle
- High compression nozzles used for neutron generation produce smooth flows but take up too much space for NSTX applications.
- Given the success of the 5 mm round nozzle used on LIMITS, we constructed a simple 20 x 5 mm nozzle 2 mm deep

Slot Style Nozzle

Possible Nozzle Configuration

Nozzle design

- Water testing of that nozzle showed that the liquid under goes one 90° rotation and stays stable for flow distance of about 30 cm with little divergence.
- The flow is smooth enough for electron beam thermal testing.
- We have built a stainless steel version suitable for lithium operation and will conduct heating tests as soon as our pump is repaired.

Available equipment

- A considerable variety of equipment is available from the decommissioning of FFTF
 - Flow control valves
 - Flow shut off valves
 - Electromagnetic Pumps
 - Oxygen monitors
- We are negotiating transfer of the most useful equipment to Sandia for use on NSTX
- The circa 1975 value of this equipment exceeds \$1M.

Terminology

- The project to install a flowing liquid lithium divertor surface in NSTX was called ALIST initially
- We should stick with that name to avoid confusion about what the goals for the project are
- I recommend we drop the module B notation

